Cloning Customized Hosts (or
Customizing Cloned Hosts)

George M. Jones & Steven M. Romig — The Ohio State University

ABSTRACT

In an environment consisting largely of many similar machines, it is certainly
advantageous to treat these machines as clones of a master copy (the so-called "cookie
cutter" approach). One of the problems with this approach is that vendor supplied tools
typically do not allow the system administrator to easily change the master copy or to
customize individual hosts after they have been cloned. In this paper we will discuss a
general methodology for handling clones that includes provisions for variations among the
machines. We will also discuss update-client and build-server, two tools that
exemplify this methodology in the OSU-CIS environment. Finally we will analyze the
advantages and disadvantages of these tools and describe our future plans.

Introduction

We have a fairly large number of nearly identi-
cal hosts at The Ohio State University Computer and
Information Sciences Department (OSU-CIS). We
have 260 diskless Sun SLCs (our Sun clients),
several SparcStation 1s (used as clients), 22 Sun file
servers (20 3/180s, 1 4/280, 1 4/330), 25 SparcSta-
tion 2 file servers that are slowly replacing the Sun
3/180s and the 4/280, and about 2 dozen other UNIX
hosts. The Sun clients are nearly identical in their
hardware configuration. Most of the clients are
SLCs with 8 megabytes of memory, and most are
diskless. Most of the 3/180 servers have identical
SMD disk configurations, the rest have nearly identi-
cal SCSI disk setups. All of the SparcStation 2
servers are identical. We have been using the
"cookie cutter" approach since we installed our first
Suns (three Sun 2s) long, long ago.

Initially we used Sun’s standard tools, which
are now called suninstall and add client,
to setup servers and their diskless clients. As our
environment grew more complicated we discovered
that the tools that Sun provided were insufficient for
maintaining our environment for several reasons.

Both suninstall and add client were
designed to install a SunOS distribution on a wide
variety of platforms at all Sun sites. The tools are
very general and require a certain amount of expert
knowledge to get the configuration of a given server
or client correct. This is fine for a tool that is used
once in a while by a trained administrator to install a
distribution for the first time. However, it is difficult
for a relatively untrained operator to use these tools
to correctly setup a server or client (as they often
have to do to fix things). Ideally one would like
suninstall and add_client to automatically
use predefined configuration files to reduce the
number of critical choices that untrained workers
have to make in setting up servers and clients.

LISA V - Sep. 30-Oct. 3, 1991 — San Diego, CA

It is also difficult to change the "master copy"
(or prototype) that suninstall and
add_client use to create servers and clients. In
the case of suninstall the prototype is the
SunOS set of distribution tapes (or worse, the
unwriteable CD!), and it would be unwieldy at best
to make changes to /bin or whatnot and rewrite
the tapes. add_client uses a prototype root
directory (stored on the server) to create new clients.
For most of the changes that we make to the clients,
it would be quite easy to simply change the on-line
prototype and be done with it. However, some of
the changes would require changing the
add_client script itself — most notably, we use a
file called /etc/rc.config to contain host and
network information (addresses, default gateways,
broadcast address, netmask). It would be nice to be
able to create a new prototype that included local
changes to the standard distribution.

Further, suninstall and add client
make no provision for individual variation.
Although we have 260 SLC clients that are essen-
tially alike in most respects, 66 of them have
significant changes that would have to be reinstalled
by hand after running add client. Some have
printers and require special printcap files, some have
swapping disks and require special kernels, some
have special daemons that run on them, some have
different /etc/ttytab files and so on. Similarly,
our servers are alike in most respects, and yet dif-
ferent in some subtle but important ways (special
daemons, printers and so on). We could handle this
in part by creating shell scripts to make those
specific changes to the standard client or server lay-
out, and then run the shell scripts as post-processing
after using the Sun tools.

In summary, suninstall and
add_client are insufficient for the task of build-
ing many cloned servers and clients because they do
not allow you to make your own prototype, they do

233

not provide for automatic customization of the hosts
being installed, and because one cannot easily select
a predefined configuration and apply it to a host.

A General Approach To The Problem

We would like to clarify that we are not trying
to solve the problem of setting up a server or client
for the first time. suninstall and
add client do this work admirably - they are
fairly easy to use, and they are flexible enough to
handle almost any sort of configuration.

The problem we are trying to solve is this: hav-
ing installed the software and made our local
changes, we want to be able to create a prototype
out of the system we have set up, and use that proto-
type to setup subsequent servers (or clients), or to
repair damaged servers and clients.

There are two parts to our proposed solution.
We need a tool to create a prototype based on an
existing server or client which is to serve as a model
for subsequent clients and servers. We also need a
tool to build a server or client based on that proto-
type. The building tool should allow one to easily
select the configuration to use, and it should have a
provision to use host-specific customizations that
will allow a site administrator to record and retain
individual variation in a collection of hosts based on
a common prototype.

At OSU-CIS, we have created tools that con-
form to this model to solve this problem for diskful
servers and diskless clients. The rest of this paper
describes the tools for building servers and clients
(respectively) and then summarizes our experiences
with these tools and our future plans for them.

The Build-Server Script

Build-Server Overview

The build-server script is used to load a
standard set of software onto Sun fileservers from a
standard software prototype. We form the prototype
by using suninstall to install the SunOS distri-
bution on a server. We add our local modifications
and test the system until it passes muster. Then we
save a copy of the / and /export file systems
with GNU tar. These tar files constitute the
prototype from which other servers are created (or
fixed).

To build a new server, the machine that is to
have software loaded onto its disks is booted as a
diskless client (though it would be possible, in prin-
cipal, to boot it off a portable disk and use that to do
the update). Once the server is running as a client,
the build-server script is run to load software
onto the disks.

The script knows how to do disk formatting,
surface analysis, disk partitioning, create filesystems,
check filesystem consistency, load software onto the
partitions, select and install default kernels and how

234

to install boot blocks. Based on user input, it can do
as little as load software back onto one partition (for
example, if a partition was badly damaged and had
to be newfs’d), or as much as analyzing, formatting,
partitioning, and loading software onto all disks on
the system (for example, when we setup a new
server).

Making a Master for Build-Server

Making a prototype for the build-server
script consists entirely of saving copies of the
"important" file systems (such as / and /export)
with GNU tar. These copies should be made from
a server that is up to date and which has been
thoroughly tested, since any bugs present on the
server will be saved in the copies and inflicted on
servers created from them.

Build-Server Configuration

The build-server script uses a
configuration file that allows the user to establish a
mapping between a server’s hostname and a particu-
lar server configuration. Among the elements of a
configuration that may be specified are the architec-
ture type, the number and type of network interfaces,
the number and type of disks, the partitioning to use,
and the path to a nonstandard kernel to use.

All servers are created equal, but they do not
stay that way very long. Although the servers are
built from the same prototype files, there are various
changes that the build-server script makes to
create their identity and to install special differences
(like services that run on one server but not another).

The first changes that must be made to all
servers are the host name and network address. We
have created a configuration file,
/etc/rc.config, that defines shell variables for
items that vary from server to server, such as the
hostname, network address, names of network
interface(s), etc. This is used by all of the other RC
files, and allows us to gather most of the host
specific information into a single file where it can be
easily edited. One of the first things that the script
does after loading the root filesystem is to modify
the values of these shell variables (ed(1) is your
friend!) to reflect the proper values for the particular
server in question.

We maintain identical /etc/rc and
/etc/rc.local files on all servers. Boot time
actions that are particular to certain servers are
invoked from /etc/rc.local, keyed off the host
name.

LISA V - Sep. 30-Oct. 3, 1991 — San Diego, CA

Benefits, History and Experience with Build-
Server

The build-server script collects expert
knowledge of system configurations and the
processes necessary to perform system setup in a
form that both documents them and makes it possi-
ble for nonexperts to perform the processes. Some
of the tasks that are automated are tedious and error
prone if performed manually. Other tools such as
suninstall have similar benefits but do not make
it easy for a non-expert to choose and apply various
configurations to particular hosts.

The original version of build-servers was
written when we were faced with the task of con-
verting 20+ servers from supporting 250 Sun 3/50s
running SunOS 3.5 to 250 SparcStation SLCs run-
ning SunOS 4.0. All of the servers were converted
in a two week period by two people, with as many
as four updates running in parallel (one has to be
mindful of resource contention limited items such as
tape drives, and of network limitations if one is run-
ning more than a single copy of build-server
simultaneously!). The script is currently being
updated to load software onto the SparcStation 2s
with SCSI disks. The script itself required almost
no modification. It was sufficient to simply write
new configuration file entries.

Problems With Build-Server and Future Plans

build-servers attempts to be a user-
friendly, easy to use interface for doing most initial
system configuration tasks (after the hardware is set
up), but reformatting a disk is still a big deal, run-
ning 10 passes of disk analysis still takes a long
time, and it will always be possible to screw things
up in a big way if such tools are not used with care
by people who have a certain level of competence
and training.

build-servers does not replace sunin-
stall — it is not nearly so versatile. Its sole pur-
pose is to apply stored configuration information and
a changeable software prototype to repair or install
diskful servers with optional host specific customiza-
tions. It also does not handle the needs of subse-
quent updates once the servers are running — that is
what our update-servers script is for (see below).

Currently, the process of setting up a server to
boot as a client in our environment is not trivial. It
requires a good deal of knowledge of things such as
tftpd, rarpd, Ethernet addresses etc. It is not
currently feasible to tell one of our operators "go
boot server X off of server Y." Also, adding new
servers to the network (not just rebuilding old ones)
is somewhat involved. There are a large number of
changes that must be made to the nameserver data-
bases, /.rhosts, /etc/hosts.equiv,
/etc/fstab, NIS (nee YP) databases, etc. Some-
thing almost always gets missed on the first pass.

LISA V - Sep. 30-Oct. 3, 1991 — San Diego, CA

This process could stand some automation. We are
planning to set up the SparcStation 2s so that they
can be easily be booted as diskless clients from
other servers, from which you could run the
build-server script to fix any problems.

We intend to add support for scripts specific to
a particular server to be run after the standard
software is loaded onto the server. This will allow
for further customization of individual servers while
retaining the benefits of having a common starting
point and being able to reload a server at any time.

The script currently only loads system software
and locally installed software packages, not user
files. We intend to add the ability to have it load
user files from our regular backup tapes.

We may move away from using tape for the
master copy and keep a copy on disk updated at reg-
ular intervals.

In the longer term we may consider adding
some '"intelligence" to the script so that it can
automatically check the sanity of things like the con-
tents of the root filesystem and reload the software if
needed. If a file system goes up in smoke, it still
takes a certain amount of expertise to determine
whether one should reload the file system from
scratch to fix it, or just restore a few missing files
from the latest backups.

The Update-Client Script

Update-Client Overview

The update-client script is used for set-
ting up diskless sun workstations. It uses a client
root prototype (stored as a GNU tar archive of
what should be in a client’s root directory), a client
configuration database (the /etc/client-info
file) and optional scripts that are used to customize
specific clients.

To build a new client, one need only setup the
prototype (with the make-master script), edit the
client configuration file, and run update-client
clientname. The update-client script will
remove the client root directory (if it exists), create a
fresh root from the master, setup the various archi-
tecture and host specific features according to the
/etc/client-info file, and execute the client
customization script (if it exists). The process is
simple and foolproof and results in a client root that
is set up the way that it "is supposed to be". Our
operations staff frequently uses this command to
recreate broken client partitions.

Making a Master For Update-Client

A script called make-master is used to
create a prototype GNU tar copy of the root direc-
tory of a client that is to serve as the prototype for
the others. The make-master script copies a
named client’s root directory, sanitizes it by

235

removing log files and architecture specific things
(vmunix, sbin and so on), and uses GNU tar to
save a copy. The script will refuse to make a master
if the client that is named has a customization script
(see below), since one would not want to propagate
those customizations through the master copy to the
rest of the clients. The saved prototype file is stored
in a common location on all servers, where
update-client can find it. The same prototype
file can be used for Sun clients of any architecture,
since the architecture specific changes are simple
and are easily handled by the update-client
script itself.

Update-Client Configuration and Customization

update-client gets its host information
from the /etc/client-info file. The client-
info file describes common characteristics of each of
the clients, such as hostname, the location of its root
directory and swap file on its server, which server it
boots from, and its binary and kernel architectures.
Here is an excerpt from the client-info file on a typi-
cal server:

KEYWORDS server root swap arch karch\
fstab proto swapsize time broadcast

DEFAULT
arch sun4
karch sunéc
fstab /usr/local/config/fstab
proto /usr/local/config/master.gtar
swapsize 30m
#
Fish entries
#
DEFAULT
server fish
time 0

broadcast 128.146.29.255

carp.cis.ohio-state.edu

root /export/clients0/carp

swap /export/clients0/carp.swap
bass.cis.ohio-state.edu

root /export/clients0/bass

swap /export/clients0/bass.swap

This example shows most of the features of the
client-info file. The keywords entry names the
fields that are allowed to appear in the file. This is
used for some simple error checking. The
default entry sets default values for fields. In this
case, we set the default binary and kernel architec-
tures, the location of the fstab file and the proto-
type root, and the size of the swapping file. In a
second default entry, we set the server, time
(used when making crontab entries that run on all
clients), and the broadcast address. The default
entries can be used repeatedly to set new defaults
throughout the file. Finally we have the client

236

entries. Each entry starts at the beginning of a line
in the file, and contains of all the name/value pairs
that appear until the next entry starts. This file
essentially lists all of the information needed to
create a client root and swap for it to boot.

In addition to the normal client information
recorded in the client-info file, a client can also have
special customization information stored in a shell
script in the /usr/local/config/specific
directory. When update-client finishes the
root directory for a client, it looks for a shell script
in the specific directory with the same name as the
client. If it exists, it is executed. The shell script is
run with its current working directory set to the
client’s root directory, and can do anything that it
wants to that client’s files. For example, Steve has a
client customization script for his workstation that
rewrites the /etc/fstab file to remove most of
the NFS mounts, rewrites /etc/rc to start amd
(an automounter), and installs a kernel that supports
the SCSI disks, tapes and CDROM that are attached
to his SLC. The client config scripts are saved
between client updates, so if you want to make per-
manent changes to a client, you simply create a cus-
tomization script that does the right things, and sub-
sequent client updates will retain your changes on
top of the new client setup.

Benefits, History and Experience with Update-
Client

Update-client is intended to be easy to
use, and since the current version only takes one
argument (the name of the client to update) it is hard
to get it wrong. The operations staff at OSU-CIS
uses it frequently to fix broken clients. It also pro-
vides for a fairly simple means for various people on
the staff to set up customized workstations — we
have customization scripts for 66 clients at this time.
It also allows us to easily and thoroughly make
changes to the root directories of all of the clients —
it takes about 45 minutes to update the 260+ client
root directories.

Problems with Update-Client and Future Plans

Although update-client does work well,
it still has its problems. The main problem is that
there are still some bits of configuration information
in the script itself. For example, there is a fragment
of the base fstab file used on clients, and parts of
the base crontab file. We have to edit the script
itself to change these and a few other things. It is
currently being rewritten to move yet more of the
configuration information out of the script itself.

Update-client is not a replacement for
Sun’s add_client script. It is not versatile
enough to use for the task of creating new client set-
ups, especially on new releases of the OS.

LISA V - Sep. 30-Oct. 3, 1991 — San Diego, CA

Miscellania

When a newly created server is booted for the
first time a script called update-all-clients
is run automatically from /etc/rc to set up any
diskless clients that that server has. update-
all-clients simply gets a list of the names of
this server’s clients and runs update-client on
each to create its root directory and swapping file.

Once we have created a bunch of nearly identi-
cal servers, we also need a mechanism to keep the
software consistent. We use a shell script called
update-servers to propagate changes from a
"master" server (typically the one used to create the
software prototype used by build-server) to the
other servers. The update-servers script is a
"smart" wrapper for rdist(1). It accepts direc-
tory names on its command line and checks to see
that it is being run from the correct host, checks for
unsafe directories or files (such as /etc — it would
be bad if the master’s rc.config file were
pushed to the other servers!), creates a rdist
script to update those directories, and invokes
rdist to update the servers.

Concluding Remarks

These scripts have proven to be incredibly use-
ful. They help us maintain an environment where
the various hosts are constructed from a consistent
base (the clone concept) while allowing us the free-
dom to introduce individual variations. They make
it possible for relatively untrained staff members to
build new servers and clients. The ability to make
new prototypes is also very useful, but the provision
for preserving and applying customizations has prob-
ably been the biggest advantage.

We are continuing to improve both of these
tools by making them more general and by moving
most of the configuration information out of the
scripts and into configuration files. We do not know
whether these specific scripts would be suitable as
they are for use at other sites or not. It should be
easy to modify them to work in other environments.

In the long run, it might be better to add
configuration selection and customization to
suninstall and add_client, which would
eliminate the need for extra tools. One could then
use add_client in the usual way to create an ini-
tial client, change it to reflect local requirements,
and make a master prototype from that client. Then
one could use add_client with different options
to apply that prototype and any desired customiza-
tions to other clients to build or fix them. Similar
things could be done with suninstall so that
one could either answer a bunch of questions and
make a new server configuration, or apply an exist-
ing prototype and customizations to a server to
repair or build it.

LISA V - Sep. 30-Oct. 3, 1991 — San Diego, CA

Acknowledgments

Steve Romig wrote the original specifications
for both build-server and update-client.
Tom Fine wrote the original build-server
script. George Jones worked on it with him, and
Tom is working on the newest version. Steve wrote
update-client and has been slowly and continu-
ally improving it. Various members of the OSU-CIS
staff have made numerous suggestions, requests and
helpful comments about both scripts.

Author Information

George Jones is a member of the software sup-
port staff at the CIS Department at The Ohio State
University. His email address is george@cis.ohio-
state.edu, his U.S. Mail address is The Ohio State
University; Department of Computer and Information
Science; 2036 Neil Avenue Mall; Columbus, OH
43210, and his telephone number is 614-292-7325.

Steve Romig is the software staff manager for
the CIS Department at The Ohio State University.
His main professional interests are in simplifying
and automating system administration tasks and in
computer security. His electronic mail address is
romig@cis.ohio-state.edu, his U.S. Mail address is
The Ohio State University; Department of Computer
and Information Science; 2036 Neil Avenue Mall;
Columbus, OH 43210, and his telephone number is
614-292-8018.

References

Sun Microsystems, SunOS Reference Manual
Volume i, section 1: "rdist(1)", July 17, 1986.

Sun Microsystems, SunOS Reference Manual
Volume iii, section 8: "add_client(8)", January
13, 1990.

Sun Microsystems, SunOS Reference Manual
Volume iii, section 8: "suninstall(8)", January
13, 1990.

Sun Microsystems, SunOS 4.1.1 Release & Install,
"Installing the SunOS", 1990

237

238 LISA V - Sep. 30-Oct. 3, 1991 — San Diego, CA

